Protein recognition motifs: design of peptidomimetics of helix surfaces.
نویسندگان
چکیده
Helices represent one of the most common recognition motifs in proteins. The design of nonpeptidic scaffolds, such as the 3,2',2''-tris-substituted terphenyl, that can imitate the side-chain orientation along one face of an alpha-helix potentially provides an effective means to modulate helix-recognition functions. Here, based on theoretical arguments, we described novel alpha-helix mimetics which are more effective than the terphenyl at constraining the aryl-aryl torsion angles to those associated with structures suitable for mimicking the alpha-helical twist for side-chain orientation and for superimposing the side chains of residues i, i + 3 or i + 4, i + 7 when compared with the alpha-beta side-chain vectors of the regular alpha-helix with an improved root mean square deviation (RMSD) of approximately 0.5 A. In addition, this study suggests that rotamer distributions around the C(alpha)--C(beta) bonds of these helix mimetics are similar to those of alpha-helices, except that these rotamer distributions show an approximately 60 degrees shift compared to those of alpha-helices when the mimetic axis is superimposed upon the helix axis. This change in rotamer orientation complicates mimicry of the helix surface.
منابع مشابه
Privileged scaffolds targeting reverse-turn and helix recognition.
BACKGROUND Protein-protein interactions dominate molecular recognition in biologic systems. One major challenge for drug discovery arises from the very large surfaces that are characteristic of many protein-protein interactions. OBJECTIVES To identify 'drug-like' small molecule leads capable of modulating protein-protein interactions based on common protein-recognition motifs, such as alpha-h...
متن کاملTailoring peptidomimetics for targeting protein-protein interactions.
Protein-protein interactions (PPI) are a hallmark of cellular signaling. Such interactions occur abundantly within the cellular milieu and encompass interactions involved in vital cellular processes. Understanding the various types, mechanisms, and consequences of PPIs with respect to cellular signaling and function is vital for targeted drug therapy. Various types of small-molecule drugs and t...
متن کاملEngineering metal complexes of chiral pentaazacrowns as privileged reverse-turn scaffolds.
Reverse turns are common structural motifs and recognition sites in protein/protein interactions. The design of peptidomimetics is often based on replacing the amide backbone of peptides by a non-peptidic scaffold while retaining the biologic mode of action. This study evaluates the potential of metal complexes of chiral pentaazacrowns conceptually derived by reduction of cyclic pentapeptides a...
متن کاملA MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملMethodology of Stylistic Study in Persian Carpet Design and Motifs
The Iranian carpets, relative to clime and culture of the productive societies, have accepted various visual and technical characters. Scientific and Methodological study of this character and their formative principles is one of the permanent debates among researchers. The main issue of this research is to consider the diversity and individuality of research and analyze methods in carpet studi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biopolymers
دوره 86 4 شماره
صفحات -
تاریخ انتشار 2007